Evolutionary algorithms

Simple genetic algorithms

- Evolutionary Strategies

Genetic Programming

Heuristic Search

- SAT solvers, CP solvers, ILP solvers:
- find exact solutions to discrete constraint optimization problems
- can be time consuming
- Heuristic solvers:
- employ "heuristics": guidelines for finding good solutions quickly
- don't find exact solutions
- can be much faster
- can deal with problems that are numerical and not in a "nice" form (eg., linear)

Examples in Fuzzy Logic

- When learning a fuzzy classifier from training data we need to find:
- Parameters of membership functions
- Attributes to put in rules
- When finding the parameters that maximize the output of a fuzzy system, we need to find numerical values

Hill-Climbing

- Hill-climbing is arguably the simplest heuristic algorithm

1. $S=$ arbitrary candidate solution
2. $S^{\prime}=$ solutions in the neighborhood of S
3. if best solution in S^{\prime} is not better than S then stop
4. let S be the best solution in S^{\prime}
5. go to 2.

Neighborhood Search

- Important choice in hill-climbing: which neighborhoods to consider
- Add a small value to each coordinate? Substruct a small value from each coordinate?

$$
\begin{aligned}
& *\left(x_{1}+\epsilon, x_{2}, \ldots, x_{n}\right) \\
& \sim\left(x_{1}-\epsilon, x_{2}, \ldots, x_{n}\right) \\
& \bullet\left(x_{1}, x_{2}+\epsilon, \ldots, x_{n}\right) \\
& \bullet\left(x_{1}, x_{2}-\epsilon, \ldots, x_{n}\right)
\end{aligned}
$$

Large Neighborhood Search

- Iteratively select a random subset of variables of limited size, find an optimal assignment for these variables, assuming $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$\left(?, ?, x_{3}, \ldots, x_{n}\right)$
$\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}, \ldots, x_{n}\right)$ the others are fixed
- Requires the availability of an algorithm to solve the intermediate $\left(x_{1}^{\prime}, x_{2}^{\prime}, ?, \stackrel{\rightharpoonup}{x}{ }_{4}, \ldots, x_{n}\right)$ problems optimally (linear programming, CP, ..)

Other Well-known

 Heuristic Search Strategies- Simulated annealing
- Tabu search
- Evolutionary algorithms
- genetic algorithms
- genetic programming
- evolutionary strategies
- Artificial ants
- Particle swarms

Advantages of GAs

- Evolution and natural selection has proven to be a robust method
- A "black box" approach that can easily be applied to many optimization problems
- GAs can be easily parallelized and run on multiple machines

Some definitions

- Population: a collection of solutions for the studied (optimization) problem
- Individual: a single solution in a GA
- Chromosome (genotype): representation for a single solution
- Gene: part of a chromosome, usually representing a variable as part of the solution

Some definitions

- Encoding: conversion of a solution to its equivalent representation (chromosome)
- Decoding: conversion of a chromosome (genotype) to its equivalent solution (phenotype)
- Fitness: scalar value denoting the suitability of a solution

GA terminology

Generation t

Genetic algorithm

Pseudo code

- Initialize population P :
- E.g. generate random p solutions
- Evaluate solutions in P :
- determine for all $h \in P$, Fitness (h)
- While terminate is FALSE
- Generate new generation P using genetic operators
- Evaluate solutions in P
- Return solution $h \in P$ with the highest Fitness

Termination criteria

- Number of generations
(restart GA if best solution is not satisfactory)
- Fitness of best individual
- Average fitness of population
- Difference of best fitness (across generations)
- Difference of average fitness (across generations)

Reproduction

Three steps:

- Selection
- Crossover
- Mutation

In GAs, the population size is often kept constant. The programmer is free to choose which methods to use for all three steps.

Roulette-wheel selection

Roulette-wheel selection

individuals fitness

Sum $=211$
Cumulative probability: $\mathbf{0 . 1 6 , 0 . 3 9}, \mathbf{0 . 5 0}, 0.57,0.76,1.00$

Tournament selection

- Select pairs randomly
- Fitter individual wins
- deterministic
- probabilistic
- constant probability that the better individual wins
- probability of winning depends on fitness

Tournament selection can also be combined with roulette-wheel selection.

Crossover

- Exchange parts of chromosome with a crossover probability (p_{c} is usually about o .8)
- i.e., with probability $1-\mathrm{p}_{\mathrm{c}}$ no crossover takes place
- Select crossover points randomly

One-point crossover:

0	1		0	1	1	1	1	1	0	1		1
0	1		1	1	0	1	0	1	1	1		0

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$

N-point crossover

- Select N points for exchanging parts
- Exchange multiple parts

Two-point crossover:

Uniform crossover

- Exchange bits using a randomly generated mask

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$

Mutation

- Crossover is used to search the solution space
- Mutation is needed to escape from local optima
- Introduces genetic diversity
- Mutation is rare (p_{m} is about 0.005) Uniform mutation:

GA iteration

Encoding and decoding

- Common coding methods
- "standard" binary integer coding
- Gray coding (binary)
- real valued coding (evolutionary strategies)
- tree structures (genetic programming)

Gray Coding

- Aim: binary coding of integers such that integers x and y for which $|x-y|=1$ only differ in one bit

Dec	Gray	Binary
0	000	000
1	001	001
2	011	010
3	010	011
4	110	100
5	111	101
6	101	110
7	100	111

Gray Coding

- Codes for $n=1$: (i.e., integers o, 1) $0 \quad 1$
- Codes for $n=2$: (i.e., integers $0,1,2,3$) Reflected entries for $n=0$:

$$
10
$$

Prefix old entries with o:
$\underline{0} 0 \quad \underline{0} 1$
Prefix reflected entries with 1 :

$$
\underline{11} \quad \underline{10}
$$

Codes hence: $\underline{0} 0 \underline{1} 11 \quad \underline{10}$

- Codes for $n=3$: (i.e., integers $0,1,2, \ldots, 7$) Reflected entries for $n=2$:

	10	11	01	00		
Codes hence:	$\underline{0} 00$	$\underline{0} 01$	$\underline{0} 11$	$\underline{0} 10$	$\underline{1} 10$	$\underline{1} 11$
	$\underline{1} 01$	$\underline{1} 00$				

Gray Coding

- Given a "normal" bit representation, how to calculate the Gray code?

¢ ${ }^{\prime \prime}$	8^{3}	
$0 \rightarrow 0 \rightarrow 00$	$\rightarrow 00 \rightarrow 000$	000
$1-1 \rightarrow 01$	-01 $\rightarrow 001$	001
$\rightarrow 1 \rightarrow 11$	$-11 \rightarrow 011$	010
$\rightarrow 0 \rightarrow 10$	$-10 \rightarrow 010$	011
	$\rightarrow 10 \rightarrow 110$	100
	$\rightarrow 11-111$	101
	$\rightarrow 01-101$	110
	$\rightarrow 00 \rightarrow 100$	111

bitstring \rightarrow Gray $10100 \rightarrow 11110$ $10101 \rightarrow 11111$ $10110 \rightarrow 11101$ $11001 \rightarrow 10101$

A bit flips in the Gray code iff the bit before it has value 1 in the original code.

Gray Coding

- Source code in Python for calculating Gray code:

```
def binaryToGray(num):
    return (num >> 1) ^ num
```


Gray Coding

- Given a Gray code, how to calculate a "normal" bit representation?

¢	2^{3}	
$0 \square 0 \rightarrow 00 \square 00 \rightarrow 000000$		
$1-1 \rightarrow 01$	$-01 \rightarrow 001$	001
$\rightarrow 1 \rightarrow 11$	$-11 \rightarrow 011$	010
$\rightarrow 0 \rightarrow 10$	$-10 \rightarrow 010$	011
	$\rightarrow 10-110$	100
	$\rightarrow 11 \rightarrow 111$	101
	$\rightarrow 01 \rightarrow 101$	110
	$\rightarrow 00 \rightarrow 100$	11

> bitstring \rightarrow Gray
> $10100 \rightarrow 1110$
> $10101 \rightarrow 11111$
> $10110 \rightarrow 11101$
> $11001 \rightarrow 10101$

A bit flips in the "normal" code (as compared to the Gray code) iff the bit before it has value 1 in the "normal" code.

Gray Coding

- Gray coding does not avoid that integers far away from each other can have similar codes
$00000=0$
$10000=31$
\rightarrow Mutation can still change numbers a lot
- Gray coding only ensures that there always is a one-bit mutation to transform integer x into integer $x+1$ or $x-1$.

