Evolutionary algorithms

- Simple genetic algorithms
- Evolutionary Strategies
- Genetic Programming

Heuristic Search

- SAT solvers, CP solvers, ILP solvers:
 - find exact solutions to discrete constraint optimization problems
 - can be time consuming
- Heuristic solvers:
 - employ "heuristics": guidelines for finding good solutions quickly
 - don't find exact solutions
 - can be much faster
 - can deal with problems that are numerical and not in a "nice" form (eg., linear)

Examples in Fuzzy Logic

- When learning a fuzzy classifier from training data we need to find:
 - Parameters of membership functions
 - Attributes to put in rules
- When finding the parameters that maximize the output of a fuzzy system, we need to find numerical values

Hill-Climbing

- Hill-climbing is arguably the simplest heuristic algorithm
- 1. S = arbitrary candidate solution
- 2. S' = solutions in the neighborhood of S
- 3. **if** best solution in *S'* is not better than *S* **then** stop
- 4. let *S* be the best solution in *S*′
- 5. go to 2.

Neighborhood Search

- Important choice in hill-climbing: which neighborhoods to consider
 - Add a small value to each coordinate? Substruct a small value from each coordinate?

Large Neighborhood Search

- Iteratively select a random subset of variables of limited size, find an optimal assignment for these variables, assuming the others are fixed
 - Requires the availability of an algorithm to solve the intermediate problems optimally (linear programming, CP, ..)

$$(x_1, x_2, \dots, x_n)$$
 $(?, ?, x_3, \dots, x_n)$
 $(x'_1, x'_2, x'_3, \dots, x_n)$
 $(x'_1, x'_2, ?, x_4, \dots, x_n)$
 $(x'_1, x'_2, x'_3, x_4, \dots, x_n)$

Other Well-known Heuristic Search Strategies

- Simulated annealing
- Tabu search
- Evolutionary algorithms
 - genetic algorithms
 - genetic programming
 - evolutionary strategies
- Artificial ants
- Particle swarms

Advantages of GAs

- Evolution and natural selection has proven to be a robust method
- A "black box" approach that can easily be applied to many optimization problems
- GAs can be easily parallelized and run on multiple machines

Some definitions

- Population: a collection of solutions for the studied (optimization) problem
- Individual: a single solution in a GA
- Chromosome (genotype): representation for a single solution
- Gene: part of a chromosome, usually representing a variable as part of the solution

Some definitions

- **Encoding**: conversion of a solution to its equivalent representation (chromosome)
- Decoding: conversion of a chromosome (genotype)
 to its equivalent solution (phenotype)
- Fitness: scalar value denoting the suitability of a solution

GA terminology

Generation t

Genetic algorithm

Pseudo code

- Initialize population *P*:
 - E.g. generate random *p* solutions
- Evaluate solutions in *P*:
 - determine for all $h \in P$, Fitness(h)
- While terminate is FALSE
 - Generate new generation P using genetic operators
 - Evaluate solutions in P
- **Return** solution $h \in P$ with the highest Fitness

Termination criteria

- Number of generations (restart GA if best solution is not satisfactory)
- Fitness of best individual
- Average fitness of population
- Difference of best fitness (across generations)
- Difference of average fitness (across generations)

Reproduction

Three steps:

- Selection
- Crossover
- Mutation

In GAs, the population size is often kept constant. The programmer is free to choose which methods to use for all three steps.

Roulette-wheel selection

Roulette-wheel selection

individuals fitness

Sum = 211

Cumulative probability: 0.16, 0.39, 0.50, 0.57, 0.76, 1.00

Tournament selection

- Select pairs randomly
- Fitter individual wins
 - deterministic
 - probabilistic
 - constant probability that the better individual wins
 - probability of winning depends on fitness

Tournament selection can also be combined with roulette-wheel selection.

Crossover

- Exchange parts of chromosome with a crossover probability (p_c is usually about o.8)
 - i.e., with probability 1-p_c no crossover takes place
- Select crossover points randomly

N-point crossover

- Select N points for exchanging parts
- Exchange multiple parts

Two-point crossover:

Uniform crossover

Exchange bits using a randomly generated mask

mask

Mutation

- Crossover is used to search the solution space
- Mutation is needed to escape from local optima
- Introduces genetic diversity
- Mutation is rare (p_m is about 0.005)
 Uniform mutation:

GA iteration

Encoding and decoding

- Common coding methods
 - "standard" binary integer coding
 - Gray coding (binary)
 - real valued coding (evolutionary strategies)
 - tree structures (*genetic programming*)

• Aim: binary coding of integers such that integers x and y for which |x-y|=1 only differ in one bit

Dec	Gray	Binary
0	000	000
1	001	001
2	011	010
3	010	011
4	110	100
5	111	101
6	101	110
7	100	111

- Codes for *n*=1: (i.e., integers 0, 1)01
- Codes for n=2: (i.e., integers 0, 1, 2, 3)
 Reflected entries for n=0:

1 0

Prefix old entries with o:

00 01

Prefix reflected entries with 1:

<u>1</u>1 <u>1</u>0

Codes hence:

<u>0</u>0 <u>0</u>1 <u>1</u>1 <u>1</u>0

• Codes for *n*=3: (i.e., integers 0, 1, 2, ..., 7) Reflected entries for *n*=2:

Given a "normal" bit representation, how to calculate the Gray code?

A bit flips in the Gray code iff the bit before it has value 1 in the original code.

Source code in Python for calculating Gray code:

```
def binaryToGray(num):
    return (num >> 1) ^ num
```

Given a Gray code, how to calculate a "normal" bit representation?

A bit flips in the "normal" code (as compared to the Gray code) iff the bit before it has value 1 in the "normal" code.

 Gray coding does not avoid that integers far away from each other can have similar codes

```
00000=0
```

- → Mutation can still change numbers a lot
- Gray coding only ensures that there always is a one-bit mutation to transform integer x into integer x+1 or x-1.